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Abstract

If G is any finite product of compact orthogonal, unitary and symplectic matrix groups, then
Wilson loops generate a dense subalgebra of continuous observables on the configuration space of
lattice gauge theory with structure groupG. If G is orthogonal, unitary or symplectic, then Wilson
loops associated to the natural representation ofG are enough.

This extends a result of Sengupta [Proc. Am. Math. Soc. 1221 (3) (1994) 897] and earlier work
by Durhuus [Lett. Math. Phys. 4 (6) (1980) 515]. In particular, our approach includes the cases of
even orthogonal and symplectic groups.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

On a compact Lie group, the Peter–Weyl theorem asserts that the characters of irreducible
representations generate a dense subalgebra of continuous functions invariant by adjunction.
In lattice gauge theory, configuration spaces are powers of a Lie group on which another
power of the same group acts, according to the geometry of a given graph and in a way
which extends the adjoint action of the group on itself. Peter–Weyl theorem can be adapted
to this situation and the functions that play the role of the characters are calledspin networks.
Despite the fact that spin networks were introduced about 40 years ago in a physical context,1
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1 Penrose introduced them for the purposes of quantization of the geometry of space. See[9] for a historical

account.
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their importance in lattice gauge theory has been recognized rather recently[1]. In the
mean time, another set of functions, easier to define, has been used as the standard set of
observables: Wilson loops. However, it is not clear at all a priori that this set is complete,
that is, that Wilson loops generate a dense subalgebra of continuous invariant functions on
the configuration space. Durhuus has proved in[3] that it is true when the group is unitary or
special unitary, by giving an algebraic necessary and sufficient condition on the group and
checking that unitary groups satisfy it. Then, Sengupta has proved in[8] that the result holds
for a product of odd orthogonal and unitary groups.2 In this paper, an approach similar
to that of Sengupta but with a little more classical invariant theory combined with the use
of spin networks allows us to add even orthogonal and symplectic groups to the list and,
hopefully, to clarify the argument.

The problem of completeness of Wilson loops can be expressed in three equivalent ways.
The first one is described above. The second one is more geometrical and consists in asking
whether a connection on a principal bundle is determined up to gauge transformation by
the conjugacy classes of its loop holonomies. The third one, closest to that considered
by Durhuus[3], is more algebraic: is it true that the diagonal conjugacy class of a finite
collection of elements of a compact Lie group is determined by the conjugacy classes of all
possible products one may form with these elements and their inverses? The equivalence of
these questions is discussed in[8], and we will make an important use of the equivalence
between the first and the third point of view.

2. The configuration space

LetG be a compact connected Lie group. LetΓ = (E, V) be a graph with oriented edges.
By this we mean thatV is a finite set andE another finite set endowed with two mappings
s : E → V andt : E → V . If e ∈ E is an edge, we call, respectively, source and target
of e the verticess(e) andt(e). We make the assumption that no vertex is isolated, that is,
s(E) ∪ t(E) = V .

Define an action ofGV onGE, as follows. Forφ = (φv)v∈V ∈ GV andg = (ge)e∈E ∈
GE, set

φ · g = ((φ · g)e)e∈E with (φ · g)e = φ−1
t(e)geφs(e).

The configuration space for lattice gauge theory onΓ with structure groupG is the topo-
logical quotient spaceCGΓ = GV \GE and it can be thought of as a finite-dimensional
approximation of a space of connections modulo gauge transformations.

Example 2.1. Consider the very simple graphL1 with one single vertexv and one single
edge. ThenCGL1

is just the space of conjugacy classes onG.

Example 2.2. Choose an integerr ≥ 1 and consider the graphLr with r edges depicted in
Fig. 1.

2 In [8], one finds a mention of the symplectic case, but without proof.
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Fig. 1. The graphsL1 andLr .

For this graph,GE = Gr on whichGV = G acts by diagonal conjugation, and we will
call diagonal conjugacy classesof Gr the points ofCGLr .

Remark 2.3. If Γ is a tree, you may check thatCGΓ is a single point.

Wilson loops are continuous functions onCGΓ or, equivalently, continuous functions onGE

invariant under the action ofGV . We recall briefly how they are defined.
LetE± denote the set containing twice each edge ofΓ , once with its natural orientation

and once with the reversed one. Formally, setE± = E × {+,−}, extend the functionss
andt to E± by s(e,+) = s(e), s(e,−) = t(e) and the two similar rules fort. A point of
GE determines a point ofGE±

by the rulesg(e,+) = ge andg(e,−) = g−1
e . For the sake of

clarity, we identifye with (e,+) and denote(e,−) by e−1. Moreover, we use the notation
e to denote a generic element ofE±.

A path inΓ is a finite sequencep = (e1, . . . , en) of elements ofE± such thatt(ei) =
s(ei+1) for all i = 1, . . . , n − 1. It is a loop based atv if t(en) = s(e1) = v. To a loop
l = (e1, . . . , en) one associates a functionhl : GE → G defined byhl(g) = gen, . . . , ge1.
One checks easily that the action ofφ ∈ GV onGE conjugateshl by φ−1

s(e1)
so that, given

any finite-dimensional representationα of G with characterχα, the function

Wα,l = χα ◦ hl : CGΓ → C

is well defined. It is called a Wilson loop.

Remark 2.4. A wider class of functions can be defined onCGΓ . Instead of considering one
loop, we can consider several loopsl1, . . . , ln based at the same point. Then, for any function
f : Gn → C invariant by diagonal adjunction, that is, such that for allg1, . . . , gn, h ∈ G,
one hasf(g1, . . . , gn) = f(hg1h

−1, . . . ,hgnh−1), the function

f ◦ (hl1, . . . , hln) : CGΓ → C

is well defined. In words, the diagonal conjugacy class of(hl1(c), . . . , hln(c)) is well defined
for everyc in the configuration space.
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3. Statement of the result

In this paper,O(n) andSO(n) denote, respectively, the groupsOnR andSOnR. By the
symplectic groupSp(n)we mean the subgroup3 U(2n)∩Sp2nC of GL2nC. It is isomorphic
to the quaternionic unitary groupUH(n). The main result is the following.

Theorem 3.1. Let G be a finite product of groups amongU(n),SU(n),O(n),SO(n),Sp(n).
LetΓ = (E, V) be a graph. Then the algebra generated by the Wilson loops is dense in the
space of continuous functions onCGΓ = GE/GV .

Example 3.2. In the case of the graphL1, Theorem 3.1is equivalent to the Peter–Weyl
theorem.

Example 3.3. Consider the case of the graphLr. Loops inLr are in one-to-one correspon-
dence with words in the letters ofE± = {e±1

1 , . . . , e±1
r }. For such a wordw and given a

pointg = (g1, . . . , gr) ofGE, let us denote byw(g) the corresponding product in reversed
order of theg′

is and their inverses. Observe that, if a loopl corresponds to a wordw, then
hl(g) = w(g) for all g.

Assume for a moment thatTheorem 3.1is proved for the graphsLr. We can rephrase it
as follows.

Proposition 3.4. Let G be a group as inTheorem 3.1If g andg′ are two points ofGr such
that for all wordw in r letters and their inverses, the elementsw(g) andw(g′) of G are
conjugate, then g andg′ belong to the same diagonal conjugacy class.

Proof. In this proof, we identify freelyGr with GE, whereE is the set of edges of the
graphLr. If two pointsg andg′ of Gr do not belong to the same diagonal conjugacy class,
their orbits inCGLr are different. Hence, byTheorem 3.1applied to the graphLr, there exists
a loop l in Lr such thathl(g) andhl(g′) are not conjugate. This loop is a wordw in the
letters ofE± and the corresponding elementsw(g) andw(g′), which are preciselyhl(g)
andhl(g′), are not conjugate. �

It turns out thatProposition 3.4is almost equivalent toTheorem 3.1. The gap is filled by
the following result.

Proposition 3.5. Let G be a compact group. LetΓ = (E, V) be a graph. Let c andc′ be
two points ofCGΓ . Assume that, for any vertexv of V and any finite sequencel1, . . . , lr
of loops inΓ based atv, the diagonal conjugacy classes of(hl1(c), . . . , hlr (c)) and
(hl1(c

′), . . . , hlr (c′)) are equal. Thenc = c′.

3 Sp2nC is the group of matrices which preserve the skew-symmetric form whose matrix in the canonical basis

is

(
0 I

−I 0

)
.
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This proposition is proved in a slightly different language in[7]. For the convenience of the
reader, we recall the argument.

Proof. Fix once for all a vertexv. Chooseg andg′ inGE representingc andc′. For any finite
family F of loops based atv, letKF be the closed subset ofG consisting of thosek such
thathl(g′) = khl(g)k−1 for all l ∈ F . By assumption,KF is non-empty, just as any finite
intersection of sets of the formKF . By compactness ofG, there existsk such thathl(g′) =
khl(g)k−1 for every loopl based atv. By letting the element ofGV equal tok at v and 1
anywhere else act ong′, we are reduced to the case wherehl(g) = hl(g

′) for all l based atv.
Now, for every vertexw, choose a pathp inΓ joiningw tov. Defineφw = hp(g)hp−1(g′).

Then one checks easily thatφw does not depend onp and that the elementφ = (φw)w∈V
of GV built in that way satisfiesφ · g = g′. Hence,c = c′. �

We have reduced the problem as follows.

Proposition 3.6. Theorem 3.1is logically equivalent to its specialization to the graphs
Lr, r ≥ 1, which is in turn equivalent toProposition 3.4.

Proof. We prove thatProposition 3.4impliesTheorem 3.1. LetΓ be a graph. Letg andg′ be
two points ofGE such that all Wilson loops take the same value atg andg′. Letv be a vertex
of the graph andl1, . . . , lr r loops based atv. Since any product of theli’s and their inverses
is still a loop based atv, Proposition 3.4applied to the elements(hl1(g), . . . , hlr (g)) and
(hl1(g

′), . . . , hlr (g′)) of Gr shows that there existsk ∈ G such thathli (g
′) = khli (g)k

−1

for all i = 1, . . . , r. Hence, byProposition 3.5, g andg′ belong to the same orbit under the
action ofGV . Hence, Wilson loops separate the points on the configuration space. Since
this space is compact, the result follows by the Stone–Weierstrass theorem. �

Remark 3.7. The fact that one needs only consider the special graphsLr can be understood
another way, explained in a particular case by Durhuus[3]. It happens that, for any graph
Γ = (E, V), the configuration spaceCGΓ is homeomorphic toCGLr with r = |E| − |V | + 1.
This homeomorphism can be constructed as follows.

Choose a spanning tree inΓ , that is, a connected subsetT of E without cycle and such
thats(T)∪ t(T) = V . Spanning trees are nothing but maximal subtrees, so that they always
exist. Choose an origin o in V. For every vertexv ∈ V , there exists a unique injective path
from o to v in T , which we denote by [o, v]T . Define a mappingJ : GE → GV\{o} ×GE\T
by setting

J((ge)e∈E) = ((h[o,v]T )v∈V\{o}, (h[o,s(e)]T e[o,t(e)]
−1
T
)e∈E\T ).

We leave the reader check thatJ is a homeomorphism and that it induces, after quotienting
both sides by the action ofGV , an isomorphism betweenCGΓ andG\GE\T , whereG acts
by diagonal conjugation. Finally, the precise value ofr comes from the fact that a tree with
|V | vertices has exactly|V | − 1 edges.4

4 Observe that|E|−|V |+1 is just the dimension of theZ-module of linear combinations with integer coefficients
of cycles inΓ .
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The translation in algebraic language allows us to reduce the list of groups that we need
to consider. The proof of the following lemma is straightforward.

Lemma 3.8. If Proposition 3.4holds for two groupsG1 andG2, then it holds for their
productG1 ×G2.

According to this lemma, it is enough to proveTheorem 3.1whenG is one of the groups
O(n),SO(n), U(n),SU(n),Sp(n).

Remark 3.9. One might expect that the property expressed byProposition 3.4is preserved
by standard transformations of the group such as quotients or central extensions. Unfor-
tunately, no such result seems easy to prove. For central extensions, Sengupta has stated
and proved in[8] a partial result, namely that a property slightly stronger than that of
Proposition 3.4is preserved. I have not been able to improve this result.

4. Spin networks

From now on, we concentrate on the case whereΓ is the graphLr for somer ≥ 1 andG
is one of the groups listed above. Instead of working on the configuration space, we prefer
to work onGE = Gr and consider only objects which are invariant under the diagonal
adjoint action ofG.

Spin networks provide us with a very natural dense subalgebra of the space of invariant
continuous functions. They are defined as follows.

Chooser finite-dimensional representationsα1, . . . , αr of G with spacesV1, . . . , Vr.
ThenG acts onV1 ⊗ · · · ⊗ Vr by α1 ⊗ · · · ⊗ αr. Let us chooseI ∈ EndG(V1 ⊗ · · · ⊗ Vr).
This means thatI is a linear endomorphism ofV1 ⊗ · · · ⊗ Vr commuting with the action
of G. Let g be an element ofGr. Setα = (α1, . . . , αr). Then the functionψα,I : Gr → C

defined by

ψα,I (g) = tr(α1(g1)⊗ · · · ⊗ αr(gr) ◦ I)
is invariant under the action ofG. It is called aspin network.

The following proposition has been proved by Baez[1].

Theorem 4.1. The spin networksψα,I , whereα runs over the set of r-tuples of irreducible
representations of G and, givenα = (α1, . . . , αr), I runs over a basis ofEndG(V1 ⊗ · · · ⊗
Vr), generate a dense subalgebra ofC(Gr)G, the space of continuous functions invariant
under the diagonal action of G.

Remark 4.2. Just as in the Peter–Weyl theorem, there is also anL2 version of this result,
but we do not need it here.

For the sake of completeness and because we find it illuminating, we give a short proof
of Theorem 4.1.
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Proof. The irreducible representations ofGr are exactly the tensor products ofr irreducible
representations ofG (see for instance[2], II.4). Thus, the Peter–Weyl theorem applied to
Gr implies that the functionsψα,J onGr, whereα is as before, butJ is anyendomorphism
of V1 ⊗ · · · ⊗ Vr, generate a dense subalgebra ofC(Gr).

Now, it is readily seen that the average under the diagonal action ofG of such a function
ψα,J is a spin networkψα,I , whereI is the orthogonal projection ofJ on EndG(V1 ⊗
· · · ⊗ Vr) for anyG-invariant scalar product on End(V1 ⊗ · · · ⊗ Vr). The result follows
immediately. �

Let us call the spin networkψα,I irreducible if α is irreducible as a representation ofGn,
that is, if everyαi is irreducible.

Proposition 4.3. Any spin network is a linear combination of irreducible spin networks.

Proof. Let ψα,I be a spin network. Decomposeα as a sum⊕kαk of irreducible represen-
tations ofGn. Accordingly, decompose the spaceV of α asV = ⊕kVk. For eachk, define
Ik as the component ofI lying in EndG(Vk) in the decomposition

EndG(V) = EndG(⊕
k
Vk) � ⊕

k,l
HomG(Vk, Vl).

Then we leave it for the reader to check thatψα,I = ∑
k ψαk,Ik . �

In order to establishTheorem 3.1for the graphsLr, it is thus enough to prove the following
result.

Proposition 4.4. Let G be one of the groupsO(n),SO(n), U(n),SU(n),Sp(n). Let r ≥ 1
be an integer. On the graphLr, any irreducible spin network is a finite linear combination
of products of Wilson loops.

We have now almost reached the formulation of the problem under which we are going to
solve it.

5. Natural representations

The main problem we are going to encounter in handling with spin networks is that they
involve invariant endomorphisms of spaces of representations ofG, which are in general
very difficult to describe.

In the case whereG is a group of complex matrices of some sizen, that is, an orthogonal,
unitary or symplectic group,5 G acts by left multiplication onV = C

n and this is called the
natural representation. The contragredient of this representation is the action onV ∗ given
by g · ϕ = ϕ ◦ g−1.

5 Recall that the elements ofSp(n) are complex matrices of size 2n.



T. Lévy / Journal of Geometry and Physics 52 (2004) 382–397 389

The first fundamental theorems(FFT) of classical invariant theory describe a set of
generators of the space EndG(V

⊗p ⊗ (V ∗)⊗q) whenp andq are given integers, for the
different kinds of matrix groupsG.

This gives us what we are looking for in a special case, namely when each representation
αi is of the formV⊗p ⊗ (V ∗)⊗q. The two following results allow us to reduce the general
case to this particular one.

Lemma 5.1. Let G be any compact Lie group. Considerα = (α1, . . . , αr) and β =
(β1, . . . , βr) two r-tuples of representations ofG. Assume that, for eachi = 1, . . . , r, the
representationαi is a subrepresentation ofβi. Letψα,I be a spin network onGr. Then there
existsJ ∈ EndG(β1 ⊗ · · · ⊗ βr) such thatψα,I = ψβ,J .

Proof. For eachi, endow the space ofβi with aG-invariant scalar product and definepi
as the orthogonal projection on a subspace on which the action ofG is isomorphic toαi.
ThenJ = I ◦ p1 ⊗ · · · ⊗ pr isG-invariant and satisfiesψα,I = ψβ,J . �

Proposition 5.2. Let G be a compact Lie group. Letα be a faithful finite-dimensional
representation of G. Then any irreducible representation of G is a subrepresentation of
α⊗p ⊗ (α∨)⊗q for some integersp, q ≥ 0.

In this statement,α∨ denotes the contragredient representation ofα. We use the convention
α⊗0 = C, the trivial representation.

This result is of course well known6 in the sense that the representations of compact Lie
groups are completely classified and that a proof “by inspection” is almost possible, see for
example the end of[2]. However, we were not able to find a direct proof in textbooks on
Lie groups. Therefore, we propose a short analytical argument.

Proof. Letαbe a faithful finite-dimensional representation ofG. Sinceα is unitary for some
Hermitian scalar product, its character satisfies the inequality|χα(g)| ≤ dimαwith equality
only if α(g) = ±Id. Hence,|χα(g)+ 1| is maximal only whenα(g) = Id, that is, sinceα is
faithful, wheng = e, the unit ofG. For eachn ≥ 0, define a probability measureµn onG by

dµn(g) = |χα(g)+ 1|2n∫
G

|χα(h)+ 1|2n dh
dg,

where again, dg denotes the unit-mass Haar measure onG. SetD(g) = |χα(g) + 1| and
define, forδ > 0,M(δ) = sup{D(g) : d(g, e) ≥ δ}, whered is any Riemannian distance
onG. Let us also denote byV(δ) the volume of the ballB(e, δ). Now, letf be a continuous
function onG such thatf(e) = 0. Chooseε > 0 and determineδ such that|f(g)| < ε

wheneverd(g, e) < δ. Finally, letη > 0 be such thatD(g) > C > M(δ) for someC when
d(e, g) < η. One checks easily that∣∣∣∣

∫
G

f(g)dµn(g)

∣∣∣∣ ≤ ε+ ‖f‖∞
V(η)

(
M(δ)

C

)2n

6 In the case of a finite group, it is referred to as a theorem of Burnside and Molien in[4].
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and the right hand side is smaller than 2ε forn large enough. Hence, the integrals
∫
G
f(g)dµn

(g) tend to zero asn tends to infinity. By applying this tof −f(0)whenf is any continuous
function, we prove that the measuresµn converge weakly to the Dirac massδe.

In particular, letρ be any irreducible representation ofG. Sinceµn(χρ) converges to
χρ(e) �= 0, there exists an integern ≥ 0 such that∫

G

χρ(g)|χα(g)+ 1|2n dg �= 0.

Now observe that|χα+1|2 is just the character of the representation(α⊕C)⊗ (α⊕C)∨ �
C ⊕ α ⊕ α∨ ⊕ (α ⊗ α∨), whereC denotes the trivial representation ofG. Thus,ρ is
a subrepresentation of then-th tensor product of this representation. This tensor product
breaks into (non-necessarily irreducible) factors of the formα⊗p⊗ (α∨)⊗q, so thatρ, being
irreducible, is a subrepresentation of one of them. �

Remark 5.3. We have not used the fact thatG was a Lie group, we have only used its
compactness. However, a compact group admits a faithful finite-dimensional representation
if and only if it is a Lie group (see for example[6]).

For matrix groups,Proposition 5.2ensures that every irreducible representation arises as a
subrepresentation of some tensor product of a number of copies of the natural representation
and its contragredient. We are now reduced to prove the following result.

Proposition 5.4. Let G be a group of the following list: O(n),SO(n), U(n),SU(n),Sp(n).
Let r ≥ 1 be an integer. Letα be an r-tuple of representations of the formV⊗p ⊗ (V ∗)⊗q,
whereV is the natural representation ofG. Then any spin networkψα,I onGr is a linear
combination of products of Wilson loops.

We leave it to the reader to check thatProposition 5.4impliesProposition 4.4.

6. Unitary groups

Let n ≥ 1 be an integer and letG be eitherU(n) or SU(n). The groupG acts on
V = C

n by multiplication on the left. For any integerd ≥ 1, there is a corresponding
diagonal action ofG onV⊗d , that we denote byρ : G → GL(V⊗d). On the other hand,
the symmetric groupGd acts by permutation of the factors onV⊗d . We denote this action
by π : Gd → GL(V⊗d). It is obvious that the actionsρ andπ commute to each other. The
following theorem is known as Schur–Weyl duality theorem.

Theorem 6.1 (Schur–Weyl duality).The two subalgebrasρ(CU(n)) and π(CGd) of
End(V⊗d) are each other’s commutant.

In other words, EndU(n)(V⊗d) is generated as a vector space by the permutations of
the factors. The case ofSU(n) follows immediately by the equality EndSU(n)(V

⊗d) =
EndU(n)(V⊗d).
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Proof. By the bicommutant theorem (see[5] for example), it is equivalent to prove that
π(CGd)

′ = ρ(CG) or to prove thatρ(CG)′ = π(CGd). The second statement is the most
important for us, but the first one is the easiest to prove.

By definition,π(CGd)′ = EndGd (V
⊗d), which in turn is just End(V⊗d)Gd , whereGd

acts by conjugation on End(V⊗d). Now,

End(V⊗d)Gd � [End(V)⊗d ]Gd � Symd(End(V)).

We must prove that Symd(End(V)) is generated by the endomorphisms of the formρ(g)⊗d ,
g ∈ U(n). This is true becauseU(n) is Zariski-dense in End(Cn) and, for any finite-
dimensional vector spaceW , Symd(W) is generated by{x⊗d |x ∈ X} as soon asX is
Zariski-dense7 in W . �

Consider the following isomorphisms ofG-modules:

End(V⊗p ⊗ (V ∗)⊗q)� (V ∗)⊗p ⊗ V⊗p ⊗ V⊗q ⊗ (V ∗)⊗q

� (V ∗)⊗p+q ⊗ V⊗p+q � End(V⊗p+q), (1)

where the second one is chosen in the simplest possible way, namely

ϕ1 · · ·ϕpu1 · · · upv1 · · · vqψ1 · · ·ψq �→ ϕ1 · · ·ϕpψ1 · · ·ψqu1 · · · upv1 · · · vq.
If σ belongs toGp+q, let us denote byIσ the element of End(V⊗p⊗(V ∗)⊗q) corresponding
via (1) toπ(σ). Schur–Weyl duality implies that EndG(V⊗p ⊗ (V ∗)⊗q) is generated by the
endomorphismsIσ . Let p1, . . . , pr, q1, . . . , qr be non-negative integers. For eachi =
1, . . . , r, consider the representationαi = V⊗pi ⊗ (V ∗)⊗qi ofG and setα = (α1, . . . , αr).
Setp = p1 + · · · +pr andq = q1 + · · · + qr. Letσ be an element ofGp+q. ConsiderIσ ∈
EndG(V⊗p ⊗ (V ∗)⊗q). By the isomorphismV⊗p ⊗ (V ∗)⊗q � ⊗r

i=1(V
⊗pi ⊗ (V ∗)⊗qi ), Iσ

can be seen as an element of EndG(α1 ⊗ · · · ⊗ αr). We may thus form the spin network
ψα,Iσ . The following proposition impliesProposition 5.4in the case of unitary groups.

Proposition 6.2. The spin networkψα,Iσ onGr is a product of Wilson loops.

Proof. Let us denote byn the natural representation ofG andn∨ its contragredient. By
definition,

ψα,Iσ (g1, . . . , gr) = tr

(
r⊗
i=1
n(gi)

⊗pi ⊗ n∨(gi)⊗qi ◦ Iσ
)
.

Each factorn(gi)⊗pi ⊗ n∨(gi)⊗qi corresponds, through(1) with p = pi andq = qi, to
n(gi)

⊗pi ⊗ n(g−1
i )⊗qi , by definition of the contragredient. Thus,

ψα,Iσ (g1, . . . , gr) = tr

(
r⊗
i=1
n(gi)

⊗pi ⊗ r⊗
i=1
n(g−1

i )⊗qi ◦ π(σ)
)
,

7 This is most easily seen through the identification Symd(W) � Pd(W)∗, wherePd denotes the algebra of
homogeneous polynomials of degreed.
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Fig. 2. Schematic representation of tensors.

where we see now both endomorphisms as elements of End(V⊗p+q). This trace can now
easily be evaluated. Before that and for the sake of clarity, let us rename the sequence
(g1, . . . , g1, . . . , gr, . . . , gr, g

−1
1 , . . . , g−1

1 , . . . , g−1
r , . . . , g−1

r ), wheregi appearspi times
andg−1

i qi times, as(h1, . . . , hp+q). Then the tensor product appearing in the last equation
is justh1 ⊗ · · · ⊗ hp+q. Hence,

ψα,Iσ (g1, . . . , gr) =
∏

C=(a1,... ,ak)

tr(ha1, . . . , hak ),

where the product runs over the cycles ofσ. We claim that each factor in this product is a
Wilson loop. To see this, define the functionsj : {1, . . . , p+ q} → {1, r} by

j(a) = i if p1 + · · · + pi−1 < a ≤ p1 + · · · + pi or

p+ q1 + · · · + qi−1 < a ≤ p+ q1 + · · · + qi

andε : {1, . . . , p+q} → {1,−1} such thatε(a) is+1 if 1 ≤ a ≤ pand−1 if p+1 ≤ a ≤ q.
They are designed in such a way thatha = g

ε(a)
j(a).

Let us now give a name to the edges of the graphLr, namely setE = (e1, . . . , er). For
each cycleC = (a1, . . . , ak) of σ, define a looplC in Lr by lC = (e

ε(ak)
j(ak)

, . . . , e
ε(a1)
j(a1)

). Then
the last equality can be rewritten simply as

ψα,Iσ (g1, . . . , gr) =
∏

C=(a1,... ,ak)

Wn,lC(g1, . . . , gr)

and the result is proved. �

This proof has a nice graphical representation which allows one to understand very easily
the generalization to the orthogonal and symplectic cases.

Let us represent a tensor ofV⊗p⊗ (V ∗)⊗q by a box withp+q oriented legs,p outwards
andq inwards. We put inside the box a schematic description of the tensor. For example, the
leftmost picture inFig. 2represents a tensor ofV ∗ ⊗ V . It could be labeled by an element
of End(V) or End(V ∗).

The middle picture represents the tensorπ((123)) ∈ End(V⊗3). The rightmost picture
represents the same tensor, via the identification8 End(V⊗3) � End(V⊗2 ⊗ V ∗).

8 We will stay a bit loose about the order of the factors in the tensors. We hope the pictures are clear enough by
themselves.
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n(h)n(h) n
v 
(g)

Fig. 3. The spin networkψ(n∨,n⊗2),I(123)
onL2 as the Wilson loopW

n,(e−1
1 ,e2,e2)

.

In this representation, tensor product corresponds to juxtaposition of the boxes and a
contraction is represented by joining an outcoming leg with an incoming one.

Let us consider a particular case, for exampler = 2,p1 = q2 = 0, q1 = 1 andp2 = 2.
We take the permutationσ = (123). Choose(g, h) ∈ G2. The picture corresponding
to tr(n∨(g) ⊗ n(h)⊗2 ◦ Iσ) is drawn below (Fig. 3). If one remembers that, through the
identification End(V ∗) � End(V), n∨(g) corresponds ton(g−1), it becomes almost evident
that the trace we are computing is also a Wilson loop, namely trn(g−1h2).

7. Orthogonal and symplectic groups

Let n ≥ 1 be an integer. LetG be eitherO(n), SO(n) or Sp(n). Recall that, by the
two first groups of this list we mean, respectively,OnR andSOnR. By the third we mean
the subgroupU(2n) ∩ Sp2nC of GL2nC, which preserves, via the identificationHn �
C
n ⊕ jCn, the standard quaternionic Hermitian scalar product onH

n. We are going to
treat at once the orthogonal and symplectic case, although they are not exactly identical.
For example, the spaceV of the natural representation ofG is C

n in the orthogonal case,
C

2n in the symplectic case. We shall use the letterm to denote the dimension ofV in both
cases.

The situation here differs significantly from the preceding one becauseG preserves
a non-degenerate bilinear form〈·, ·〉 on V . In the orthogonal case, we are going to use
orthonormal bases ofV . In the symplectic case, we say that(e1, . . . , e2n) is a standard
basis forV if 〈ei, ei+n〉 = 1 for i = 1, . . . , n and〈ei, ej〉 = 0 if |i− j| �= n.

The bilinear form〈·, ·〉 induces an isomorphismv �→ 〈v, ·〉 betweenV andV ∗ which
intertwines the natural representation and its contragredient. So, there is no need in this
case to considerV ∗. Now, if ρ denotes as before the diagonal action ofG on V⊗d ,
ρ(CG)′ is larger than9 π(CGd). The first fundamental theorem tells us how much
larger.

In this section, we will identify freely End(V⊗d)with V⊗2d by saying thatv1⊗· · ·⊗v2d
transformsw1 ⊗ · · · ⊗ wd into

∏d
i=1〈vi, wi〉vd+1 ⊗ · · · ⊗ v2d .

9 We keep the notationπ for the action of the symmetric group of any order on the corresponding tensor power
of V .



394 T. Lévy / Journal of Geometry and Physics 52 (2004) 382–397

Fig. 4. The endomorphismJτ , whend = 4 andτ = {{1,3}, {2,8}, {4,7}, {5,6}}.

Let τ be a partition of the set{1, . . . ,2d} in pairs. Let(e1, . . . , em) be an orthonormal
or standard basis ofV , according to the nature ofG. We defineJτ ∈ End(V⊗d) by

Jτ =
m∑

i1,... ,i2d=1

∏
{k,l}∈τ,k<l

〈eik , eil〉ei1 ⊗ · · · ⊗ ei2d .

One checks easily that this definition ofJτ does not depend on the choice of the orthonormal
basis ofV and thatJτ commutes to the action ofG, that is,Jτ ∈ ρ(CG)′ = EndG(V⊗d).

The graphical representation introduced in the preceding section may be helpful to clarify
the situation. An example is given byFig. 4. Note that we do not need arrows to distinguish
betweenV andV ∗ anymore, since we are working in tensor powers ofV alone.

The following theorem is proved in[4].

Theorem 7.1 (FFT for orthogonal and symplectic groups).The subspace EndG(V⊗d) =
ρ(CG)′ of End(V⊗d) is spanned by the endomorphisms Jτ , where τ runs over the partitions
of {1, . . . ,2d} in pairs.

Remark 7.2. The proof of this theorem is longer than that of Schur–Weyl duality, so
we do not give it here. However, it is usually stated and proved for complex Lie groups
rather than compact ones. Let us explain how the former can be deduced from the latter.
If G is O(n) (resp.Sp(n)), let us denote byGC the groupOnC (resp.Sp2nC). SinceG
is contained inGC, one needs just prove that anyu ∈ EndG(V⊗d) is invariant by the
wholeGC. Via the isomorphism End(V⊗d) � V⊗2d � (V ∗)⊗2d , we can think ofu as
a polynomial, that we denote bỹu, in 2d variables onV , homogeneous of degree one in
each variable, invariant under the action ofG. This means that, for everyv ∈ V⊕2d , the
functionũ(·v) : GC → C which sendsg to ũ(gv) is constant onG. Since, on one hand, this
function is polynomial ing and on the other hand,G is Zariski-dense inGC, the function
is constant onGC. So,u is invariant by the whole complex orthogonal (resp. symplectic)
group.

The theorem forSO(n) follows from that forO(n) just becauseρ(CSO(n)) = ρ(CO(n)).

We proceed now as before. Letp1, . . . , pr be integers. For eachi = 1, . . . , r, letαi denote
V⊗pi and setα = (α1, . . . , αr). Setp = p1 + · · · + pr. Let τ be a partition of{1, . . . ,2r}
in pairs.

Proposition 7.3. The spin network ψα,Jτ on Lr is a product of Wilson loops.
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The proof is very similar to that ofProposition 6.2. We are going to show that, up to some
isomorphism,Jτ acts as a permutation operator. For this, define for eachi = 1, . . . , pTi =
π((i, p+ i)) ∈ End(V⊗2p) � End(End(V⊗p)).

Lemma 7.4. Let τ be a partition of {1, . . . ,2p} in pairs. There exist i1, . . . , ik ∈ {1, . . . , p}
and σ ∈ Gp such that Ti1 ◦ · · · ◦ Tik (Jτ) = π(σ).

Remark 7.5. It is worth saying what this lemma means graphically, because this is much
simpler than the aspect of the proof might suggest. Let us represent, as we did inFig. 4, a
partition likeτ as a pairing of 2p points byp lines. We put the points 1, . . . , p on the top
edge of a box andp+1, . . . ,2pon the bottom edge, withp+ibelowi. Then the lemma says
that, by switching the positions ofi andp + i for some well-choseni’s without changing
the pairingτ, we can make sure that every line connects a point on the top edge with a
point on the bottom edge. The diagram one gets in that way corresponds to a permutation
operator.

Proof. It is convenient in this proof to think ofτ as a fixed-point free involution of
{1, . . . ,2p}. Letθ1, . . . , θp denote the transpositions(1, p+1), . . . , (p,2p). Then, given
some integersi1, . . . , ik between 1 andp, one checks easily that

Ti1 ◦ · · · ◦ Tik (Jτ) = Jθi1 ···θik τθi1 ···θik ,

where the product in the subscript ofJ is a composition of permutations of{1, . . . ,2p}.
On the other hand, ifσ is a permutation of{1, . . . , p} andτ pairsi with σ(i)+ p for each
i = 1, . . . , p, thenJτ = π(σ). Thus, the lemma will be proved if we show that, for some
i1, . . . , ik between 1 andp and someσ ∈ Gp, θi1 · · · θik τθi1 · · · θik pairsi with σ(i)+p for
i = 1, . . . , p.

To do this, setθ = θ1, . . . , θp. The mapθτ acts on{1, . . . ,2p} and we are interested
in its orbits. In particular, observe that{1, . . . , p} is a reunion of orbits ofθτ if and only if
there existsσ ∈ Gp such thatτ pairsi with σ(i)+ p for all i = 1, . . . , p.

We define by induction a sequence of cycles, that is, of cyclic permutations, on{1, . . . , p}
as follows.

Setx1 = 1 and letO1 be the orbit ofx1 underθτ, endowed with its cyclic order. Letmp :
{1, . . . ,2p} → {1, . . . , p} be the map which sendsi andi+p to i, i = 1, . . . , p. Define the
cycleC1 = mp(O1) and setx2 = min({1, . . . , p}− C1). Then, givenC1, . . . , Cn−1 andxn,
defineOn as the orbit ofxn, Cn = mp(On) andxn+1 = min({1, . . . , p} − (C1 ∪ · · · ∪ Cn)).
This procedure stops when the cyclesC1, . . . , Cn cover{1, . . . , p}. These cycles are disjoint
by construction and we see each of them as an element ofGp. Let us callσ their product.

Now for eachi = 1, . . . , p, one and only one of the two elementsi andi+p belongs to
O1 ∪ · · · ∪On. Setεi = 0 if it is i, εi = 1 if it is i+ p. Defineτ̃ = (

∏p

i=1 θ
εi
i )τ(

∏p

i=1 θ
εi
i ).

It is easily checked that the iterates ofθτ̃ preserve{1, . . . , p} and in fact that̃τ pairsi with
σ(i) + p for i = 1, . . . , p. The lemma is proved, by taking fori1, . . . , ik those integersi
such thatεi = 1. �

The elements ofG have a simple behavior under the transposition operatorsTi.
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Lemma 7.6. Consider the following isomorphism:

T : End(V) � V ∗ ⊗ V
〈,〉⊗Id−−→ V ⊗ V

π((12))−−−→ V ⊗ V
〈,〉⊗Id−−→ V ∗ ⊗ V � End(V).

Let g be an element of G. Then T(g) = εg−1, where ε = 1 if G is orthogonal and ε = −1
if G is symplectic.

Proof. If v belongs toV andφ toV ∗, let us denote bỹv andφ̃ the corresponding elements
of V ∗ andV , respectively, so that̃v = 〈v, ·〉 andφ = 〈φ̃, ·〉.

Let g = ∑
i φi ⊗ vi be an element ofG ⊂ End(V). ThenT(g) = ∑

i ṽi ⊗ φ̃i. Now letu
andw be two elements ofV . One has

〈gu, w〉=
〈∑

i

φi(u)vi, w

〉
=

∑
i

ṽi(w)〈φ̃i, u〉 = ε

〈
u,

∑
i

ṽi(w)φ̃i

〉
=〈u, εT(g)(w)〉,

whereε equals plus or minus one, according to the symmetry of the form〈·, ·〉. Since this
form is non-degenerate and preserved byg, the result follows. �

Proof of Proposition 7.3. Let g1, . . . , gr ber elements ofG. By definition,

ψα,Jτ (g1, . . . , gr) = tr(g⊗p1
1 ⊗ · · · ⊗ g⊗pr

r ◦ Jτ).
By Lemma 7.4, there existi1, . . . , ik ∈ {1, . . . , p} andσ ∈ Gp such thatTi1◦· · ·◦Tik (Jτ) =
π(σ), or equivalently,Jτ = Ti1 ◦ · · · ◦ Tik (π(σ)), sinceT 2

i = 1.
Now, observe that, foru andu′ in End(V⊗p), one has tr(u ◦ Ti(u′)) = tr(Ti(u) ◦ u′) for

all i = 1, . . . , p. Hence, we have

ψα,Jτ (g1, . . . , gr) = tr(Ti1 ◦ · · · ◦ Tik (g⊗p1
1 ⊗ · · · ⊗ g⊗pr

r ) ◦ π(σ)).
For the sake of clarity, let us rename the sequence(g1, . . . , g1, . . . , gr, . . . , gr), wheregi
appearspi times, as just(h1, . . . , hp). Thus,g⊗p1

1 ⊗· · ·⊗g
⊗pr
r equalsh1 ⊗· · ·⊗hp. Now,

by Lemma 7.6, we have

Ti1 ◦ · · · ◦ Tik (h1 ⊗ · · · ⊗ hp) = εkh
ε1
1 ⊗ · · · ⊗ h

εp
p ,

where nowεi = −1 if i appears in the listi1, . . . , ik andεi = 1 otherwise.10 Here again,
ε = 1 in the orthogonal case,−1 in the symplectic one.

Now we finish the proof just as that ofProposition 6.2. Indeed,

ψα,Jτ (g1, . . . , gr)= εk tr(hε1
1 ⊗ · · · ⊗ h

εp
p ◦ π(σ))= εk

∏
C=(a1,... ,ak)

tr(h
εa1
a1 , . . . , h

εak
ak ),

where the product runs over the decomposition ofσ in cycles. Each factor in this product
is a Wilson loop. Indeed, let us definej : {1, . . . , p} → {1, . . . , r} by

j(a) = min{i : a ≤ p1 + · · · + pi}.
10 This newεi is minus twice the one defined in the proof ofLemma 7.4, plus one.
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Then by definition,ha = gj(a). If E = {e1, . . . , er} denotes the set of edges of the graphLr,

then we can define for every cycleG = (a1, . . . , ak) of σ the looplG = (e
εa1
j(a1)

, . . . , e
εak
j(ak)

).
With this notation, we have proved that

ψα,Jτ (g1, . . . , gr) = εk
∏

C=(a1,... ,ak)

Wn,lG ,

wheren denotes the natural representation. This proves the proposition. �
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